SAM7SE256 Atmel Corporation, SAM7SE256 Datasheet - Page 465

no-image

SAM7SE256

Manufacturer Part Number
SAM7SE256
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM7SE256

Flash (kbytes)
256 Kbytes
Pin Count
144
Max. Operating Frequency
48 MHz
Cpu
ARM7TDMI
Hardware Qtouch Acquisition
No
Max I/o Pins
88
Ext Interrupts
88
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
1
Twi (i2c)
1
Uart
3
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
3.0 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
3
Output Compare Channels
3
Input Capture Channels
3
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
35.4
Table 35-1.
35.5
35.5.1
35.5.2
35.5.3
35.6
6222F–ATARM–14-Jan-11
Pin Name
RF
RK
RD
TF
TK
TD
Pin Name List
Product Dependencies
Functional Description
I/O Lines
Power Management
Interrupt
I/O Lines Description
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.
Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.
The SSC is not continuously clocked. The SSC interface may be clocked through the Power
Management Controller (PMC), therefore the programmer must first configure the PMC to
enable the SSC clock.
The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling interrupts requires programming the AIC before configuring the SSC.
All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.
This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.
The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2.
Pin Description
Receiver Frame Synchro
Receiver Clock
Receiver Data
Transmitter Frame Synchro
Transmitter Clock
Transmitter Data
SAM7SE512/256/32
Input/Output
Input/Output
Input/Output
Input/Output
Output
Type
Input
465

Related parts for SAM7SE256