AT91SAM9M10-CU Atmel, AT91SAM9M10-CU Datasheet - Page 214

IC MCU 16/32BIT ARM9 324TFBGA

AT91SAM9M10-CU

Manufacturer Part Number
AT91SAM9M10-CU
Description
IC MCU 16/32BIT ARM9 324TFBGA
Manufacturer
Atmel
Series
AT91SAMr
Datasheets

Specifications of AT91SAM9M10-CU

Core Processor
ARM9
Core Size
16/32-Bit
Speed
400MHz
Connectivity
EBI/EMI, Ethernet, I²C, SPI, SSC, UART/USART, USB
Peripherals
AC'97, DMA, LCD, POR, PWM, WDT
Number Of I /o
160
Program Memory Size
64KB (64K x 8)
Program Memory Type
ROM
Ram Size
128K x 8
Voltage - Supply (vcc/vdd)
0.9 V ~ 1.1 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
324-TFBGA
Processor Series
AT91SAMx
Core
ARM926EJ-S
Data Bus Width
32 bit
Data Ram Size
32 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
133 MHz
Number Of Programmable I/os
5
Number Of Timers
2 x 16 bit
Operating Supply Voltage
1.65 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JTRACE-ARM-2M, MDK-ARM, RL-ARM, ULINK2
Development Tools By Supplier
AT91SAM-ICE, AT91-ISP, AT91SAM9M10-G45-EK
Controller Family/series
AT91
No. Of I/o's
160
Ram Memory Size
64KB
Cpu Speed
400MHz
No. Of Timers
2
Rohs Compliant
Yes
Cpu Family
AT91
Device Core
ARM926EJ-S
Device Core Size
32b
Frequency (max)
400MHz
Total Internal Ram Size
64KB
# I/os (max)
160
Number Of Timers - General Purpose
7
Operating Supply Voltage (typ)
1.8/2.5/3.3V
Operating Supply Voltage (max)
1.1/1.95/3.6V
Operating Supply Voltage (min)
0.9/1.65/1.8/3V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
324
Package Type
TFBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM9M10-CU
Manufacturer:
Atmel
Quantity:
996
Part Number:
AT91SAM9M10-CU
Manufacturer:
Atmel
Quantity:
10 000
21.11.4
Figure 21-30. NWAIT Latency
6355B–ATARM–21-Jun-10
intenally synchronized
NWAIT signal
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NWAIT Latency and Read/Write Timings
NWAIT
A
[25:2]
MCK
NRD
There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on
ure
When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:
minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle
21-30.
4
NWAIT latency
3
2 cycle resynchronization
minimal pulse length
2
EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)
NRD_PULSE = 5
Read cycle
1
0
0
WAIT STATE
0
AT91SAM9M10
Fig-
214

Related parts for AT91SAM9M10-CU