MCF51EM128CLL Freescale Semiconductor, MCF51EM128CLL Datasheet - Page 500

IC MCU 32BIT 128KB FLASH 100LQFP

MCF51EM128CLL

Manufacturer Part Number
MCF51EM128CLL
Description
IC MCU 32BIT 128KB FLASH 100LQFP
Manufacturer
Freescale Semiconductor
Series
MCF51EMr
Datasheets

Specifications of MCF51EM128CLL

Core Processor
Coldfire V1
Core Size
32-Bit
Speed
50MHz
Connectivity
I²C, SCI, SPI
Peripherals
LCD, LVD, PWM, WDT
Number Of I /o
63
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
MCF51EM
Core
ColdFire V1
Data Bus Width
32 bit
Data Ram Size
16 KB
Interface Type
RS-232, LIN
Maximum Clock Frequency
50 MHz
Number Of Timers
3
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
JLINK-CF-BDM26, EWCF
Development Tools By Supplier
TWR-MCF51CN-KIT, TWR-SER, TWR-ELEV, TOWER
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCF51EM128CLL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Analog-to-Digital Converter (S08ADC16)
For 12-bit conversions the code transitions only after the full code width is present, so the quantization
error is −1 lsb to 0 lsb and the code width of each step is 1 lsb.
21.7.2.5
The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:
21.7.2.6
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.
Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
converter yields the lower code (and vice-versa). However, even small amounts of system noise can cause
the converter to be indeterminate (between two codes) for a range of input voltages around the transition
voltage. This range is normally around ±1/2 lsb in 8-bit or 10-bit mode, or around 2 lsb in 12-bit mode,
and increases with noise.
This error may be reduced by repeatedly sampling the input and averaging the result. Additionally the
techniques discussed in
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a
higher input voltage. Missing codes are those values never converted for any input value.
In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.
21-44
Zero-scale error (E
the actual code width of the first conversion and the ideal code width (1/2 lsb in 8-bit or 10-bit
modes and 1 lsb in 12-bit mode). If the first conversion is 0x001, the difference between the actual
0x001 code width and its ideal (1 lsb) is used.
Full-scale error (E
the last conversion and the ideal code width (1.5 lsb in 8-bit or 10-bit modes and 1
mode). If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its
ideal (1
Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.
Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function and includes all forms of error.
Linearity Errors
Code Jitter, Non-Monotonicity, and Missing Codes
LSB
MCF51EM256 Series ColdFire Integrated Microcontroller Reference Manual, Rev. 8
) is used.
Section 21.7.2.3
FS
ZS
) — This error is defined as the difference between the actual code width of
) (sometimes called offset) — This error is defined as the difference between
reduces this error.
Freescale Semiconductor
LSB
in 12-bit

Related parts for MCF51EM128CLL