ATMEGA2561V ATMEL [ATMEL Corporation], ATMEGA2561V Datasheet - Page 154

no-image

ATMEGA2561V

Manufacturer Part Number
ATMEGA2561V
Description
8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA2561V-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ALTERA
0
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
154
ATmega640/1280/1281/2560/2561
Figure 55. Phase Correct PWM Mode, Timing Diagram
The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOT-
TOM. When either OCRnA or ICRn is used for defining the TOP value, the OCnA or
ICFn Flag is set accordingly at the same timer clock cycle as the OCRnx Registers are
updated with the double buffer value (at TOP). The Interrupt Flags can be used to gen-
erate an interrupt each time the counter reaches the TOP or BOTTOM value.
When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCRnx Registers are written. As the third period shown
in Figure 55 illustrates, changing the TOP actively while the Timer/Counter is running in
the phase correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCRnx Register. Since the OCRnx update occurs
at TOP, the PWM period starts and ends at TOP. This implies that the length of the fall-
ing slope is determined by the previous TOP value, while the length of the rising slope is
determined by the new TOP value. When these two values differ the two slopes of the
period will differ in length. The difference in length gives the unsymmetrical result on the
output.
It is recommended to use the phase and frequency correct mode instead of the phase
correct mode when changing the TOP value while the Timer/Counter is running. When
using a static TOP value there are practically no differences between the two modes of
operation.
In phase correct PWM mode, the compare units allow generation of PWM waveforms on
the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table
85 on page 161). The actual OCnx value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OCnx). The PWM waveform is gener-
ated by setting (or clearing) the OCnx Register at the compare match between OCRnx
and TCNTn when the counter increments, and clearing (or setting) the OCnx Register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM
TCNTn
OCnx
OCnx
Period
1
2
3
4
OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)
TOVn Interrupt Flag Set
(Interrupt on Bottom)
2549K–AVR–01/07
(COMnx1:0 = 2)
(COMnx1:0 = 3)

Related parts for ATMEGA2561V