ATMEGA2561V ATMEL [ATMEL Corporation], ATMEGA2561V Datasheet - Page 253

no-image

ATMEGA2561V

Manufacturer Part Number
ATMEGA2561V
Description
8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA2561V-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ALTERA
0
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Using the TWI
Figure 99. Interfacing the Application to the TWI in a Typical Transmission
2549K–AVR–01/07
writes to TWCR to
TWI bus
transmission of
1. Application
START condition sent
Status code indicates
START
initiate
2. TWINT set.
START
TWDR, and loads appropriate control
3. Check TWSR to see if START was
signals into TWCR, makin sure that
sent. Application loads SLA+W into
and TWSTA is written to zero.
TWINT is written to one,
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus
events, like reception of a byte or transmission of a START condition. Because the TWI
is interrupt-based, the application software is free to carry on other operations during a
TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with
the Global Interrupt Enable bit in SREG allow the application to decide whether or not
assertion of the TWINT Flag should generate an interrupt request. If the TWIE bit is
cleared, the application must poll the TWINT Flag in order to detect actions on the TWI
bus.
When the TWINT Flag is asserted, the TWI has finished an operation and awaits appli-
cation response. In this case, the TWI Status Register (TWSR) contains a value
indicating the current state of the TWI bus. The application software can then decide
how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and
TWDR Registers.
Figure 99 is a simple example of how the application can interface to the TWI hardware.
In this example, a Master wishes to transmit a single data byte to a Slave. This descrip-
tion is quite abstract, a more detailed explanation follows later in this section. A simple
code example implementing the desired behavior is also presented.
1. The first step in a TWI transmission is to transmit a START condition. This is
SLA+W
After the TWI has transmitted an address byte.
After the TWI has lost arbitration.
After the TWI has been addressed by own slave address or general call.
After the TWI has received a data byte.
After a STOP or REPEATED START has been received while still addressed as a
Slave.
When a bus error has occurred due to an illegal START or STOP condition.
done by writing a specific value into TWCR, instructing the TWI hardware to
transmit a START condition. Which value to write is described later on. However,
it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the
Status code indicates
SLA+W sent, ACK
4. TWINT set.
received
A
Application loads data into TWDR, and
5. Check TWSR to see if SLA+W was
ATmega640/1280/1281/2560/2561
loads appropriate control signals into
TWCR, making sure that TWINT is
sent and ACK received.
written to one
Data
data sent, ACK received
Status code indicates
6. TWINT set.
A
making sure that TWINT is written to one
7. Check TWSR to see if data was sent
Application loads appropriate control
signals to send STOP into TWCR,
STOP
and ACK received.
TWINT set
Indicates
253

Related parts for ATMEGA2561V