ATMEGA2561V ATMEL [ATMEL Corporation], ATMEGA2561V Datasheet - Page 305

no-image

ATMEGA2561V

Manufacturer Part Number
ATMEGA2561V
Description
8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA2561V-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ALTERA
0
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Using the Boundary-
scan Chain
Using the On-chip Debug
System
2549K–AVR–01/07
A complete description of the Boundary-scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 308.
As shown in Figure 128, the hardware support for On-chip Debugging consists mainly of
All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.
The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, two Program Memory Break Points, and two combined Break Points. Together,
the four Break Points can be configured as either:
A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.
A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 306.
The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN Fuse must be programmed and no Lock bits must be set for the On-
chip debug system to work. As a security feature, the On-chip debug system is disabled
when either of the LB1 or LB2 Lock bits are set. Otherwise, the On-chip debug system
would have provided a back-door into a secured device.
The AVR Studio enables the user to fully control execution of programs on an AVR
device with On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio
programs assembled with Atmel Corporation’s AVR Assembler and C programs com-
piled with third party vendors’ compilers.
AVR Studio runs under Microsoft
For a full description of the AVR Studio, please refer to the AVR Studio User Guide.
Only highlights are presented in this document.
All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited number of
code Break Points (using the BREAK instruction) and up to two data memory Break
Points, alternatively combined as a mask (range) Break Point.
A scan chain on the interface between the internal AVR CPU and the internal
peripheral units.
Break Point unit.
Communication interface between the CPU and JTAG system.
4 single Program Memory Break Points.
3 Single Program Memory Break Point + 1 single Data Memory Break Point.
2 single Program Memory Break Points + 2 single Data Memory Break Points.
2 single Program Memory Break Points + 1 Program Memory Break Point with mask
(“range Break Point”).
2 single Program Memory Break Points + 1 Data Memory Break Point with mask
(“range Break Point”).
ATmega640/1280/1281/2560/2561
®
Windows
®
supports source level execution of Assembly
®
95/98/2000 and Microsoft Windows NT
305
®
.

Related parts for ATMEGA2561V