ATMEGA2561V ATMEL [ATMEL Corporation], ATMEGA2561V Datasheet - Page 33

no-image

ATMEGA2561V

Manufacturer Part Number
ATMEGA2561V
Description
8-bit Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA2561V-8AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ALTERA
0
Part Number:
ATMEGA2561V-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA2561V-8MI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA2561V-8MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
2549K–AVR–01/07
Table 6. EEPROM Mode Bits
• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEPE is cleared.
• Bit 2 – EEMPE: EEPROM Master Programming Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be
written. When EEMPE is set, setting EEPE within four clock cycles will write data to the
EEPROM at the selected address If EEMPE is zero, setting EEPE will have no effect.
When EEMPE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEPE bit for an EEPROM write procedure.
• Bit 1 – EEPE: EEPROM Programming Enable
The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEPE bit must be written to one to write the
value into the EEPROM. The EEMPE bit must be written to one before a logical one is
written to EEPE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):
1. Wait until EEPE becomes zero.
2. Wait until SPMEN in SPMCSR becomes zero.
3. Write new EEPROM address to EEAR (optional).
4. Write new EEPROM data to EEDR (optional).
5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.
The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Memory Programming” on page 342 for details about Boot
programming.
Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.
When the write access time has elapsed, the EEPE bit is cleared by hardware. The user
software can poll this bit and wait for a zero before writing the next byte. When EEPE
has been set, the CPU is halted for two cycles before the next instruction is executed.
EEPM1
0
0
1
1
EEPM0
0
1
0
1
Programming
ATmega640/1280/1281/2560/2561
3.4 ms
1.8 ms
1.8 ms
Time
Operation
Erase and Write in one operation (Atomic Operation)
Erase Only
Write Only
Reserved for future use
33

Related parts for ATMEGA2561V