HD6417709SF133B Renesas Electronics America, HD6417709SF133B Datasheet - Page 598

IC SUPERH MPU ROMLESS 208LQFP

HD6417709SF133B

Manufacturer Part Number
HD6417709SF133B
Description
IC SUPERH MPU ROMLESS 208LQFP
Manufacturer
Renesas Electronics America
Series
SuperH® SH7700r
Datasheet

Specifications of HD6417709SF133B

Core Processor
SH-3
Core Size
32-Bit
Speed
133MHz
Connectivity
EBI/EMI, FIFO, IrDA, SCI, SmartCard
Peripherals
DMA, POR, WDT
Number Of I /o
96
Program Memory Type
ROMless
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
1.65 V ~ 2.05 V
Data Converters
A/D 8x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-20°C ~ 75°C
Package / Case
208-LQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-
Program Memory Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HD6417709SF133B
Manufacturer:
RENESAS
Quantity:
79
Part Number:
HD6417709SF133B
Manufacturer:
Renesas Electronics America
Quantity:
10 000
Part Number:
HD6417709SF133B
Manufacturer:
RENESAS/瑞萨
Quantity:
20 000
Part Number:
HD6417709SF133B-V
Manufacturer:
RENESAS/瑞萨
Quantity:
20 000
Part Number:
HD6417709SF133BV
Manufacturer:
RENESAS
Quantity:
1 000
Part Number:
HD6417709SF133BV
Manufacturer:
RENESAS/瑞萨
Quantity:
20 000
5. TEND Flag and TE Bit Processing: The TEND flag is set to 1 during transmission of the stop
bit of the last data. Consequently, if the TE bit is cleared to 0 immediately after setting of the
TEND flag has been confirmed, the stop bit will be in the process of transmission and will not be
transmitted normally. Therefore, the TE bit should not be cleared to 0 for at least 0.5 serial clock
cycles (or 1.5 cycles if two stop bits are used) after setting of the TEND flag is confirmed.
6. Receive Data Sampling Timing and Receive Margin: The SCIF operates on a base clock
with a frequency of 16 times the transfer rate. In reception, the SCIF synchronizes internally with
the fall of the start bit, which it samples on the base clock. Receive data is latched at the rising
edge of the eighth base clock pulse. The timing is shown in figure 16.13.
The receive margin in asynchronous mode can therefore be expressed as shown in equation 1.
Equation 1:
Where:
From equation 1, if F = 0 and D = 0.5, the receive margin is 46.875%, as given by equation 2.
Rev. 5.00, 09/03, page 552 of 760
Base clock
data (RxD)
Synchro-
sampling
sampling
Receive
nization
timing
timing
M = 0.5
M: Receive margin (%)
N: Ratio of clock frequency to bit rate (N = 16)
D: Clock duty cycle (D = 0 to 1.0)
L: Frame length (L = 9 to 12)
F: Absolute deviation of clock frequency
Data
Figure 16.13 Receive Data Sampling Timing in Asynchronous Mode
0 1 2 3 4 5 6 7 8 9 10111213 1415 0 1 2 3 4 5 6 7 8 9 10111213 1415 0 1 2 3 4 5
2N
1
Start bit
8 clocks
(L
16 clocks
0.5) F
7.5 clocks
D
N
0.5
(1 + F)
+7.5 clocks
100%
D0
D1

Related parts for HD6417709SF133B