MC9S12E128CPV Freescale Semiconductor, MC9S12E128CPV Datasheet - Page 76

Microcontrollers (MCU) 16 Bit 16MHz

MC9S12E128CPV

Manufacturer Part Number
MC9S12E128CPV
Description
Microcontrollers (MCU) 16 Bit 16MHz
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of MC9S12E128CPV

Data Bus Width
16 bit
Program Memory Type
Flash
Program Memory Size
128 KB
Data Ram Size
8 KB
Interface Type
SCI, SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
92
Number Of Timers
16 bit
Operating Supply Voltage
3.135 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Package / Case
LQFP-112
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
On-chip Dac
8 bit, 2 Channel
Lead Free Status / Rohs Status
No RoHS Version Available

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Part Number:
MC9S12E128CPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Chapter 1 MC9S12E128 Device Overview (MC9S12E128DGV1)
1.7
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters.
1.7.1
Once the user has programmed the FLASH, the part can be secured by programming the security bits
located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part
and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash block description chapter for more details on the security configuration.
1.7.2
1.7.2.1
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
1.7.2.2
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be
blocked.
1.7.3
In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an
external program in expanded mode.
Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a
program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase
and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but
the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to
76
Protection of the contents of FLASH,
Operation in single-chip mode,
Operation from external memory with internal FLASH disabled.
Security
Securing the Microcontroller
Operation of the Secured Microcontroller
Unsecuring the Microcontroller
Normal Single Chip Mode
Executing from External Memory
MC9S12E128 Data Sheet, Rev. 1.07
Freescale Semiconductor

Related parts for MC9S12E128CPV