LPC1769FBD100,551 NXP Semiconductors, LPC1769FBD100,551 Datasheet - Page 286

IC ARM CORTEX MCU 512K 100-LQFP

LPC1769FBD100,551

Manufacturer Part Number
LPC1769FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1769FBD100,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
100-LQFP
Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
120MHz
Connectivity
CAN, Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC17
Core
ARM Cortex M3
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
Ethernet, USB, OTG, CAN
Maximum Clock Frequency
120 MHz
Number Of Programmable I/os
70
Number Of Timers
4
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 8 Channel
On-chip Dac
10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4966
935290522551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1769FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
13.9 HNP support
UM10360
User manual
I
to the USB_I2C_INT bit.
For more details on the interrupts created by device controller, see the USB device
chapter. For interrupts created by the host controllers, see the OHCI specification.
The EN_USB_INTS bit in the USBIntSt register enables the routing of any of the USB
related interrupts to the NVIC controller (see
Remark: During the HNP switching between host and device with the OTG stack active,
an action may raise several levels of interrupts. It is advised to let the OTG stack initiate
any actions based on interrupts and ignore device and host level interrupts. This means
that during HNP switching, the OTG stack provides the communication to the host and
device controllers.
This section describes the hardware support for the Host Negotiation Protocol (HNP)
provided by the OTG controller.
When two dual-role OTG devices are connected to each other, the plug inserted into the
mini-AB receptacle determines the default role of each device. The device with the mini-A
plug inserted becomes the default Host (A-device), and the device with the mini-B plug
inserted becomes the default Peripheral (B-device).
Once connected, the default Host (A-device) and the default Peripheral (B-device) can
switch Host and Peripheral roles using HNP.
The context of the OTG controller operation is shown in
Device, or OTG) communicates with its software stack through a set of status and control
registers and interrupts. In addition, the OTG software stack communicates with the
external OTG transceiver through the I
signal.
2
Fig 38. USB OTG interrupt handling
C related interrupts are set in the I2C_STS register and routed, if enabled by I2C_CTL,
HNP_SUCCESS
HNP_FAILURE
INTERRUPTS
INTERRUPTS
INTERRUPTS
USB DEVICE
REMOVE_PU
USB HOST
USB I2C
OTGIntSt
TMR
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
2
USB_INT_REQ_DMA
USB_NEED_CLOCK
USB_INT_REQ_HP
USB_INT_REQ_LP
C interface and the external transceiver interrupt
USB_HOST_INT
EN_USB_INTS
USB_OTG_INT
USB_I2C_INT
USBIntSt
Figure
38).
Chapter 13: LPC17xx USB OTG
Figure
39. Each controller (Host,
UM10360
© NXP B.V. 2010. All rights reserved.
to NVIC
286 of 840

Related parts for LPC1769FBD100,551