SAM9G45 Atmel Corporation, SAM9G45 Datasheet - Page 451

no-image

SAM9G45

Manufacturer Part Number
SAM9G45
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G45

Flash (kbytes)
0 Kbytes
Pin Count
324
Max. Operating Frequency
400 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
160
Ext Interrupts
160
Usb Transceiver
3
Usb Speed
Hi-Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
5
Lin
4
Ssc
2
Ethernet
1
Sd / Emmc
2
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
Yes
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
440
Resistive Touch Screen
Yes
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
External Bus Interface
2
Dram Memory
DDR2/LPDDR, SDRAM/LPSDR
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
0.9 to 1.1
Fpu
No
Mpu / Mmu
No/Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
Figure 30-4. Output Line Timings
30.4.8
30.4.9
6438G–ATARM–19-Apr-11
Write PIO_ODSR at 1
Write PIO_ODSR at 0
Write PIO_CODR
Write PIO_SODR
Inputs
Input Glitch Filtering
PIO_ODSR
PIO_PDSR
MCK
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.
Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.
Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in
The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.
When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.
APB Access
2 cycles
APB Access
2 cycles
SAM9G45
Figure
30-5.
451

Related parts for SAM9G45