SAM9G45 Atmel Corporation, SAM9G45 Datasheet - Page 875

no-image

SAM9G45

Manufacturer Part Number
SAM9G45
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9G45

Flash (kbytes)
0 Kbytes
Pin Count
324
Max. Operating Frequency
400 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
160
Ext Interrupts
160
Usb Transceiver
3
Usb Speed
Hi-Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
5
Lin
4
Ssc
2
Ethernet
1
Sd / Emmc
2
Graphic Lcd
Yes
Video Decoder
No
Camera Interface
Yes
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
440
Resistive Touch Screen
Yes
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
NO
External Bus Interface
2
Dram Memory
DDR2/LPDDR, SDRAM/LPSDR
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
0.9 to 1.1
Fpu
No
Mpu / Mmu
No/Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
No
39.4
39.4.1
6438G–ATARM–19-Apr-11
Functional Description
Data Timing
The Image Sensor Interface (ISI) supports direct connection to the ITU-R BT. 601/656 8-bit
mode compliant sensors and up to 12-bit grayscale sensors. It receives the image data stream
from the image sensor on the 12-bit data bus.
This module receives up to 12 bits for data, the horizontal and vertical synchronizations and the
pixel clock. The reduced pin count alternative for synchronization is supported for sensors that
embed SAV (start of active video) and EAV (end of active video) delimiters in the data stream.
The Image Sensor Interface interrupt line is connected to the Advanced Interrupt Controller and
can trigger an interrupt at the beginning of each frame and at the end of a DMA frame transfer. If
the SAV/EAV synchronization is used, an interrupt can be triggered on each delimiter event.
For 8-bit color sensors, the data stream received can be in several possible formats: YCbCr
4:2:2, RGB 8:8:8, RGB 5:6:5 and may be processed before the storage in memory. The data
stream may be sent on both preview path and codec path if the bit ISI_CDC in the ISI_CTRL is
one. To optimize the bandwidth, the codec path should be enabled only when a capture is
required.
In grayscale mode, the input data stream is stored in memory without any processing. The 12-bit
data, which represent the grayscale level for the pixel, is stored in memory one or two pixels per
word, depending on the GS_MODE bit in the ISI_CFG2 register. The codec datapath is not
available when grayscale image is selected.
A frame rate counter allows users to capture all frames or 1 out of every 2 to 8 frames.
The two data timings using horizontal and vertical synchronization and EAV/SAV sequence syn-
chronization are shown in
In the VSYNC/HSYNC synchronization, the valid data is captured with the active edge of the
pixel clock (ISI_PCK), after SFD lines of vertical blanking and SLD pixel clock periods delay pro-
grammed in the control register.
The ITU-RBT.656-4 defines the functional timing for an 8-bit wide interface.
There are two timing reference signals, one at the beginning of each video data block SAV
(0xFF000080) and one at the end of each video data block EAV(0xFF00009D). Only data sent
between EAV and SAV is captured. Horizontal blanking and vertical blanking are ignored. Use of
the SAV and EAV synchronization eliminates the ISI_VSYNC and ISI_HSYNC signals from the
interface, thereby reducing the pin count. In order to retrieve both frame and line synchronization
properly, at least one line of vertical blanking is mandatory.
Figure 39-3
and
Figure
39-4.
SAM9G45
875

Related parts for SAM9G45