mcf51ac256a Freescale Semiconductor, Inc, mcf51ac256a Datasheet - Page 383

no-image

mcf51ac256a

Manufacturer Part Number
mcf51ac256a
Description
Mcf51ac Flexis
Manufacturer
Freescale Semiconductor, Inc
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
mcf51ac256aCFGE
Manufacturer:
FREESCALE
Quantity:
2 400
Part Number:
mcf51ac256aCFGE
Manufacturer:
FREESCALE
Quantity:
2 400
Part Number:
mcf51ac256aCFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mcf51ac256aCLKE
Manufacturer:
FREESCALE
Quantity:
1 500
Part Number:
mcf51ac256aCLKE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mcf51ac256aCPUE
Manufacturer:
MURATA
Quantity:
1 000
The CLKS bits can also be changed at anytime, but the actual switch to the newly selected clock is shown
by the CLKST bits. If the newly selected clock is not available, the previous clock will remain selected.
The DRS bits can be changed at anytime except when LP bit is 1. If the DRS bits are changed while in
FLL engaged internal (FEI) or FLL engaged external (FEE), the bus clock remains at the previous DCO
range until the new DCO starts. When the new DCO starts the bus clock switches to it. After switching to
the new DCO the FLL remains unlocked for several reference cycles. Once the selected DCO startup time
is over, the FLL is locked. The completion of the switch is shown by the DRST bits.
For details see
16.4.4
The BDIV bits can be changed at anytime and the actual switch to the new frequency will occur
immediately.
16.4.5
The low power bit (LP) is provided to allow the FLL or PLL to be disabled and thus conserve power when
these systems are not being used. The DRS bit can not be written while LP bit is 1.However, in some
applications it may be desirable to enable the FLL or PLL and allow it to lock for maximum accuracy
before switching to an engaged mode. Do this by writing the LP bit to 0.
16.4.6
When IRCLKEN is set the internal reference clock signal will be presented as MCGIRCLK, which can be
used as an additional clock source. The MCGIRCLK frequency can be re-targeted by trimming the period
of the internal reference clock. This can be done by writing a new value to the TRIM bits in the MCGTRM
register. Writing a larger value will decrease the MCGIRCLK frequency, and writing a smaller value to
the MCGTRM register will increase the MCGIRCLK frequency. The TRIM bits will effect the MCGOUT
frequency if the MCG is in FLL engaged internal (FEI), FLL bypassed internal (FBI), or bypassed low
power internal (BLPI) mode. The TRIM and FTRIM value is initialized by POR but is not affected by
other resets.
Until MCGIRCLK is trimmed, programming low reference divider (RDIV) factors may result in
MCGOUT frequencies that exceed the maximum chip-level frequency and violate the chip-level clock
timing specifications (see the
If IREFSTEN and IRCLKEN bits are both set, the internal reference clock will keep running during stop
mode in order to provide a fast recovery upon exiting stop.
16.4.7
The MCG module can support an external reference clock with frequencies between 31.25 kHz to 40 MHz
in all modes. When ERCLKEN is set, the external reference clock signal will be presented as
MCGERCLK, which can be used as an additional clock source. When IREFS = 1, the external reference
clock will not be used by the FLL or PLL and will only be used as MCGERCLK. In these modes, the
Freescale Semiconductor
Bus Frequency Divider
Low Power Bit Usage
Internal Reference Clock
External Reference Clock
Figure
MCF51AC256 ColdFire Integrated Microcontroller Reference Manual, Rev. 5
16-9.
Device Overview
chapter).
Multipurpose Clock Generator (MCGV3)
16-15

Related parts for mcf51ac256a