AT91SAM9G45-EKES Atmel, AT91SAM9G45-EKES Datasheet - Page 976

KIT EVAL FOR AT91SAM9G45

AT91SAM9G45-EKES

Manufacturer Part Number
AT91SAM9G45-EKES
Description
KIT EVAL FOR AT91SAM9G45
Manufacturer
Atmel
Series
AT91SAM Smart ARMr
Type
MCUr

Specifications of AT91SAM9G45-EKES

Contents
Board
Processor To Be Evaluated
SAM9G45
Data Bus Width
32 bit
Interface Type
I2C, SPI, UART
Maximum Operating Temperature
+ 50 C
Minimum Operating Temperature
- 10 C
Operating Supply Voltage
1.8 V to 3.3 V
For Use With/related Products
AT91SAM9G45
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
Q4626953
41.4
41.4.1
6438F–ATARM–21-Jun-10
Functional Description
Basic Definitions
Source peripheral: Device on an AMBA layer from where the DMAC reads data, which is then
stored in the channel FIFO. The source peripheral teams up with a destination peripheral to form
a channel.
Destination peripheral: Device to which the DMAC writes the stored data from the FIFO (previ-
ously read from the source peripheral).
Memory: Source or destination that is always “ready” for a DMAC transfer and does not require
a handshaking interface to interact with the DMAC.
Channel: Read/write datapath between a source peripheral on one configured AMBA layer and
a destination peripheral on the same or different AMBA layer that occurs through the channel
FIFO. If the source peripheral is not memory, then a source handshaking interface is assigned to
the channel. If the destination peripheral is not memory, then a destination handshaking inter-
face is assigned to the channel. Source and destination handshaking interfaces can be assigned
dynamically by programming the channel registers.
Master interface: DMAC is a master on the AHB bus reading data from the source and writing it
to the destination over the AHB bus.
Slave interface: The APB interface over which the DMAC is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.
Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMAC and source or destination peripheral to control the transfer of a single or
chunk transfer between them. This interface is used to request, acknowledge, and control a
DMAC transaction. A channel can receive a request through one of two types of handshaking
interface: hardware or software.
Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
chunk transfer between the DMAC and the source or destination peripheral.
Software handshaking interface: Uses software registers to contr5ol the transfer of a single or
chunk transfer between the DMAC and the source or destination peripheral. No special DMAC
handshaking signals are needed on the I/O of the peripheral. This mode is useful for interfacing
an existing peripheral to the DMAC without modifying it.
Flow controller: The device (either the DMAC or source/destination peripheral) that determines
the length of and terminates a DMAC buffer transfer. If the length of a buffer is known before
enabling the channel, then the DMAC should be programmed as the flow controller. If the length
of a buffer is not known prior to enabling the channel, the source or destination peripheral needs
to terminate a buffer transfer. In this mode, the peripheral is the flow controller.
Transfer hierarchy:
buffer transfers, chunk or single, and AMBA transfers (single or burst) for non-memory peripher-
als.
Figure 41-3 on page 977
Figure 41-2 on page 977
shows the transfer hierarchy for memory.
illustrates the hierarchy between DMAC transfers,
AT91SAM9G45
976

Related parts for AT91SAM9G45-EKES