LPC1767FBD100,551 NXP Semiconductors, LPC1767FBD100,551 Datasheet - Page 146

IC ARM CORTEX MCU 512K 100-LQFP

LPC1767FBD100,551

Manufacturer Part Number
LPC1767FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1767FBD100,551

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
100MHz
Connectivity
Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
LPC17
Core
ARM Cortex M3
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-4967
935289808551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1767FBD100,551
Quantity:
9 999
Part Number:
LPC1767FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
10.8 Overview
UM10360
User manual
10.8.1 Partitioning
The Ethernet frame consists of the destination address, the source address, an optional
VLAN field, the length/type field, the payload and the frame check sequence.
Each address consists of 6 bytes where each byte consists of 8 bits. Bits are transferred
starting with the least significant bit.
The Ethernet block and associated device driver software offer the functionality of the
Media Access Control (MAC) sublayer of the data link layer in the OSI reference model
(see IEEE std 802.3). The MAC sublayer offers the service of transmitting and receiving
frames to the next higher protocol level, the MAC client layer, typically the Logical Link
Control sublayer. The device driver software implements the interface to the MAC client
layer. It sets up registers in the Ethernet block, maintains descriptor arrays pointing to
frames in memory and receives results back from the Ethernet block through interrupts.
When a frame is transmitted, the software partially sets up the Ethernet frames by
providing pointers to the destination address field, source address field, the length/type
field, the MAC client data field and optionally the CRC in the frame check sequence field.
Preferably concatenation of frame fields should be done by using the scatter/gather
functionality of the Ethernet core to avoid unnecessary copying of data. The hardware
adds the preamble and start frame delimiter fields and can optionally add the CRC, if
requested by software. When a packet is received the hardware strips the preamble and
start frame delimiter and passes the rest of the packet - the Ethernet frame - to the device
driver, including destination address, source address, length/type field, MAC client data
and frame check sequence (FCS).
Apart from the MAC, the Ethernet block contains receive and transmit DMA managers that
control receive and transmit data streams between the MAC and the AHB interface.
Frames are passed via descriptor arrays located in host memory, so that the hardware
can process many frames without software/CPU support. Frames can consist of multiple
fragments that are accessed with scatter/gather DMA. The DMA managers optimize
memory bandwidth using prefetching and buffering.
A receive filter block is used to identify received frames that are not addressed to this
Ethernet station, so that they can be discarded. The Rx filters include a perfect address
filter and a hash filter.
Wake-on-LAN power management support makes it possible to wake the system up from
a power-down state -a state in which some of the clocks are switched off -when wake-up
frames are received over the LAN. Wake-up frames are recognized by the receive filtering
modules or by a Magic Frame detection technology. System wake-up occurs by triggering
an interrupt.
An interrupt logic block raises and masks interrupts and keeps track of the cause of
interrupts. The interrupt block sends an interrupt request signal to the host system.
Interrupts can be enabled, cleared and set by software.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 10: LPC17xx Ethernet
UM10360
© NXP B.V. 2010. All rights reserved.
146 of 840

Related parts for LPC1767FBD100,551