LPC1767FBD100,551 NXP Semiconductors, LPC1767FBD100,551 Datasheet - Page 198

IC ARM CORTEX MCU 512K 100-LQFP

LPC1767FBD100,551

Manufacturer Part Number
LPC1767FBD100,551
Description
IC ARM CORTEX MCU 512K 100-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1767FBD100,551

Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
100MHz
Connectivity
Ethernet, I²C, IrDA, Microwire, SPI, SSI, UART/USART
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
70
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 8x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-LQFP
Processor Series
LPC17
Core
ARM Cortex M3
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2, MCB1760, MCB1760U, MCB1760UME
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
568-4967
935289808551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1767FBD100,551
Quantity:
9 999
Part Number:
LPC1767FBD100,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
NXP Semiconductors
UM10360
User manual
10.17.10 Receive filtering
Features of receive filtering
The Ethernet MAC has several receive packet filtering functions that can be configured
from the software driver:
The filtering functions can be logically combined to create complex filtering functions.
Furthermore, the Ethernet block can pass or reject runt packets smaller than 64 bytes; a
promiscuous mode allows all packets to be passed to software.
Overview
The Ethernet block has the capability to filter out receive frames by analyzing the Ethernet
destination address in the frame. This capability greatly reduces the load on the host
system, because Ethernet frames that are addressed to other stations would otherwise
need to be inspected and rejected by the device driver software, using up bandwidth,
memory space, and host CPU time. Address filtering can be implemented using the
perfect address filter or the (imperfect) hash filter. The latter produces a 6-bit hash code
which can be used as an index into a 64 entry programmable hash table.
depicts a functional view of the receive filter.
At the top of the diagram the Ethernet receive frame enters the filters. Each filter is
controlled by signals from control registers; each filter produces a ‘Ready’ output and a
‘Match’ output. If ‘Ready’ is 0 then the Match value is ‘don’t care’; if a filter finishes filtering
then it will assert its Ready output; if the filter finds a matching frame it will assert the
Match output along with the Ready output. The results of the filters are combined by logic
functions into a single RxAbort output. If the RxAbort output is asserted, the frame does
not need to be received.
In order to reduce memory traffic, the receive data path has a buffer of 68 bytes. The
Ethernet MAC will only start writing a frame to memory after 68 byte delays. If the RxAbort
signal is asserted during the initial 68 bytes of the frame, the frame can be discarded and
removed from the buffer and not stored to memory at all, not using up receive descriptors,
etc. If the RxAbort signal is asserted after the initial 68 bytes in a frame (probably due to
reception of a Magic Packet), part of the frame is already written to memory and the
Ethernet MAC will stop writing further data in the frame to memory; the FailFilter bit in the
status word of the frame will be set to indicate that the software device driver can discard
the frame immediately.
Perfect address filter: allows packets with a perfectly matching station address to be
identified and passed to the software driver.
Hash table filter: allows imperfect filtering of packets based on the station address.
Unicast/multicast/broadcast filtering: allows passing of all unicast, multicast, and/or
broadcast packets.
Magic packet filter: detection of magic packets to generate a Wake-on-LAN interrupt.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 10: LPC17xx Ethernet
UM10360
© NXP B.V. 2010. All rights reserved.
Figure 24
198 of 840

Related parts for LPC1767FBD100,551