PIC18F97J60-I/PF Microchip Technology, PIC18F97J60-I/PF Datasheet - Page 316

IC PIC MCU FLASH 65KX16 100TQFP

PIC18F97J60-I/PF

Manufacturer Part Number
PIC18F97J60-I/PF
Description
IC PIC MCU FLASH 65KX16 100TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F97J60-I/PF

Program Memory Type
FLASH
Program Memory Size
128KB (64K x 16)
Package / Case
100-TQFP, 100-VQFP
Core Processor
PIC
Core Size
8-Bit
Speed
41.667MHz
Connectivity
EBI/EMI, Ethernet, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
70
Ram Size
3808 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3808 B
Interface Type
Display Driver/Ethernet/EUSART/I2C/MSSP/SPI
Maximum Clock Frequency
41.667 MHz
Number Of Programmable I/os
70
Number Of Timers
5
Operating Supply Voltage
2.35 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136, DM183033
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 10-bit
Package
100TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
41.667 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC162064 - HEADER INTFC MPLABICD2 64/80/100DM163024 - BOARD DEMO PICDEM.NET 2
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F97J60-I/PF
Manufacturer:
MICRRCHIP
Quantity:
1 800
Part Number:
PIC18F97J60-I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F97J60-I/PF
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
PIC18F97J60-I/PF
0
Company:
Part Number:
PIC18F97J60-I/PF
Quantity:
9 000
PIC18F97J60 FAMILY
20.2.4
During Sleep mode, all clocks to the EUSARTx are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper byte reception cannot be per-
formed. The auto-wake-up feature allows the controller
to wake-up due to activity on the RXx/DTx line while the
EUSARTx is operating in Asynchronous mode.
The auto-wake-up feature is enabled by setting the
WUE bit (BAUDCONx<1>). Once set, the typical receive
sequence on RXx/DTx is disabled and the EUSARTx
remains in an Idle state, monitoring for a wake-up event
independent of the CPU mode. A wake-up event
consists of a high-to-low transition on the RXx/DTx line.
(This coincides with the start of a Sync Break or a
Wake-up Signal character for the LIN protocol.)
Following a wake-up event, the module generates an
RCxIF interrupt. The interrupt is generated synchro-
nously to the Q clocks in normal operating modes
(Figure 20-8) and asynchronously if the device is in
Sleep mode (Figure 20-9). The interrupt condition is
cleared by reading the RCREGx register.
The WUE bit is automatically cleared once a
low-to-high transition is observed on the RXx line
following the wake-up event. At this point, the
EUSARTx module is in Idle mode and returns to normal
operation. This signals to the user that the Sync Break
event is over.
20.2.4.1
Since auto-wake-up functions by sensing rising edge
transitions on RXx/DTx, information with any state
changes before the Stop bit may signal a false
End-of-Character (EOC) and cause data or framing
errors. To work properly, therefore, the initial character in
DS39762B-page 314
AUTO-WAKE-UP ON SYNC BREAK
CHARACTER
Special Considerations Using
Auto-Wake-up
Preliminary
the transmission must be all ‘0’s. This can be 00h
(8 bytes) for standard RS-232 devices or 000h (12 bits)
for LIN bus.
Oscillator start-up time must also be considered,
especially in applications using oscillators with longer
start-up intervals (i.e., HS or HSPLL mode). The Sync
Break (or Wake-up Signal) character must be of
sufficient length and be followed by a sufficient interval
to allow enough time for the selected oscillator to start
and provide proper initialization of the EUSARTx.
20.2.4.2
The timing of WUE and RCxIF events may cause some
confusion when it comes to determining the validity of
received data. As noted, setting the WUE bit places the
EUSARTx in an Idle mode. The wake-up event causes
a receive interrupt by setting the RCxIF bit. The WUE bit
is cleared after this when a rising edge is seen on
RXx/DTx. The interrupt condition is then cleared by
reading the RCREGx register. Ordinarily, the data in
RCREGx will be dummy data and should be discarded.
The fact that the WUE bit has been cleared (or is still
set), and the RCxIF flag is set, should not be used as
an indicator of the integrity of the data in RCREGx.
Users should consider implementing a parallel method
in firmware to verify received data integrity.
To assure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process. If
a receive operation is not occurring, the WUE bit may
then be set just prior to entering the Sleep mode.
Special Considerations Using
the WUE Bit
© 2006 Microchip Technology Inc.

Related parts for PIC18F97J60-I/PF