PIC18F97J60-I/PF Microchip Technology, PIC18F97J60-I/PF Datasheet - Page 73

IC PIC MCU FLASH 65KX16 100TQFP

PIC18F97J60-I/PF

Manufacturer Part Number
PIC18F97J60-I/PF
Description
IC PIC MCU FLASH 65KX16 100TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F97J60-I/PF

Program Memory Type
FLASH
Program Memory Size
128KB (64K x 16)
Package / Case
100-TQFP, 100-VQFP
Core Processor
PIC
Core Size
8-Bit
Speed
41.667MHz
Connectivity
EBI/EMI, Ethernet, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
70
Ram Size
3808 x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3808 B
Interface Type
Display Driver/Ethernet/EUSART/I2C/MSSP/SPI
Maximum Clock Frequency
41.667 MHz
Number Of Programmable I/os
70
Number Of Timers
5
Operating Supply Voltage
2.35 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DV164136, DM183033
Minimum Operating Temperature
- 40 C
On-chip Adc
16-ch x 10-bit
Package
100TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
41.667 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
AC162064 - HEADER INTFC MPLABICD2 64/80/100DM163024 - BOARD DEMO PICDEM.NET 2
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F97J60-I/PF
Manufacturer:
MICRRCHIP
Quantity:
1 800
Part Number:
PIC18F97J60-I/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F97J60-I/PF
Manufacturer:
MICROCHI
Quantity:
20 000
Part Number:
PIC18F97J60-I/PF
0
Company:
Part Number:
PIC18F97J60-I/PF
Quantity:
9 000
5.1.5
The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21 bits wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC<15:8> bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.
The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes to
the PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by an
operation that reads PCL. This is useful for computed
offsets to the PC (see Section 5.1.8.1 “Computed
GOTO”).
The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to
a value of ‘0’. The PC increments by 2 to address
sequential instructions in the program memory.
The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.
5.1.6
The return address stack allows any combination of up to
31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL instruction
is executed, or an interrupt is Acknowledged. The PC
value is pulled off the stack on a RETURN, RETLW or a
RETFIE instruction (and on ADDULNK and SUBULNK
instructions if the extended instruction set is enabled).
PCLATU and PCLATH are not affected by any of the
RETURN or CALL instructions.
FIGURE 5-4:
© 2006 Microchip Technology Inc.
PROGRAM COUNTER
RETURN ADDRESS STACK
Top-of-Stack Registers
TOSU
00h
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS
TOSH
1Ah
TOSL
34h
Top-of-Stack
Return Address Stack <20:0>
Preliminary
001A34h
000D58h
PIC18F97J60 FAMILY
The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, STKPTR. The stack space is not
part of either program or data space. The Stack Pointer
is readable and writable and the address on the top of
the stack is readable and writable through the
Top-of-Stack Special Function Registers. Data can also
be pushed to, or popped from the stack, using these
registers.
A CALL type instruction causes a push onto the stack.
The Stack Pointer is first incremented and the location
pointed to by the Stack Pointer is written with the
contents of the PC (already pointing to the instruction
following the CALL). A RETURN type instruction causes
a pop from the stack. The contents of the location
pointed to by the STKPTR are transferred to the PC
and then the Stack Pointer is decremented.
The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits indicate if the stack is
full, has overflowed or has underflowed.
5.1.6.1
Only the top of the return address stack (TOS) is read-
able
TOSU:TOSH:TOSL, holds the contents of the stack
location
(Figure 5-4). This allows users to implement a software
stack if necessary. After a CALL, RCALL or interrupt
(and ADDULNK and SUBULNK instructions if the
extended instruction set is enabled), the software can
read
TOSU:TOSH:TOSL registers. These values can be
placed on a user-defined software stack. At return time,
the
TOSU:TOSH:TOSL and do a return.
The user must disable the global interrupt enable bits
while accessing the stack to prevent inadvertent stack
corruption.
11111
11110
11101
00011
00010
00001
00000
software
and
the
pointed
writable.
Top-of-Stack Access
pushed
can
to
A
Stack Pointer
STKPTR<4:0>
by
return
value
set
00010
the
of
these
by
STKPTR
DS39762B-page 71
three
reading
values
registers,
register
the
to

Related parts for PIC18F97J60-I/PF