DF61654N50FTV Renesas Electronics America, DF61654N50FTV Datasheet - Page 169

IC H8SX/1654 MCU FLASH 120TQFP

DF61654N50FTV

Manufacturer Part Number
DF61654N50FTV
Description
IC H8SX/1654 MCU FLASH 120TQFP
Manufacturer
Renesas Electronics America
Series
H8® H8SX/1600r
Datasheet

Specifications of DF61654N50FTV

Core Processor
H8SX
Core Size
32-Bit
Speed
50MHz
Connectivity
I²C, IrDA, SCI, SmartCard, USB
Peripherals
DMA, PWM, WDT
Number Of I /o
75
Program Memory Size
512KB (512K x 8)
Program Memory Type
FLASH
Ram Size
40K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 2x8b
Oscillator Type
External
Operating Temperature
-20°C ~ 75°C
Package / Case
120-TQFP, 120-VQFP
For Use With
HS0005KCU11H - EMULATOR E10A-USB H8S(X),SH2(A)3DK1657 - DEV EVAL KIT FOR H8SX/1657
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DF61654N50FTV
Manufacturer:
Renesas Electronics America
Quantity:
10 000
Section 5 Interrupt Controller
5.7
CPU Priority Control Function Over DTC and DMAC
The interrupt controller has a function to control the priority among the DTC, DMAC, and the
CPU by assigning different priority levels to the DTC, DMAC, and CPU. Since the priority level
can automatically be assigned to the CPU on an interrupt occurrence, it is possible to execute the
CPU interrupt exception handling prior to the DTC or DMAC transfer.
The priority level of the CPU is assigned by bits CPUP2 to CPUP0 in CPUPCR. The priority level
of the DTC is assigned by bits DTCP2 to DTCP0 in CPUPCR. The priority level of the DMAC is
assigned by bits DMAP2 to DMAP0 in DMDR for each channel.
The priority control function over the DTC and DMAC is enabled by setting the CPUPCE bit in
CPUPCR to 1. When the CPUPCE bit is 1, the DTC and DMAC activation sources are controlled
according to the respective priority levels.
The DTC activation source is controlled according to the priority level of the CPU indicated by
bits CPUP2 to CPUP0 and the priority level of the DTC indicated by bits DTCP2 to DTCP0. If the
CPU has priority, the DTC activation source is held. The DTC is activated when the condition by
which the activation source is held is cancelled (CPUPCE = 1 and value of bits CPUP2 to CPUP0
is greater than that of bits DTCP2 to DTCP0). The priority level of the DTC is assigned by the
DTCP2 to DTCP0 bits regardless of the activation source.
For the DMAC, the priority level can be specified for each channel. The DMAC activation source
is controlled according to the priority level of each DMAC channel indicated by bits DMAP2 to
DMAP0 and the priority level of the CPU. If the CPU has priority, the DMAC activation source is
held. The DMAC is activated when the condition by which the activation source is held is
cancelled (CPUPCE = 1 and value of bits CPUP2 to CPUP0 is greater than that of bits DMAP2 to
DMAP0). If different priority levels are specified for channels, the channels of the higher priority
levels continue transfer and the activation sources for the channels of lower priority levels than
that of the CPU are held.
There are two methods for assigning the priority level to the CPU by the IPSETE bit in CPUPCR.
Setting the IPSETE bit to 1 enables a function to automatically assign the value of the interrupt
mask bit of the CPU to the CPU priority level. Clearing the IPSETE bit to 0 disables the function
to automatically assign the priority level. Therefore, the priority level is assigned directly by
software rewriting bits CPUP2 to CPUP0. Even if the IPSETE bit is 1, the priority level of the
CPU is software assignable by rewriting the interrupt mask bit of the CPU (I bit in CCR or I2 to I0
bits in EXR).
Rev.1.00 Sep. 08, 2005 Page 119 of 966
REJ09B0219-0100

Related parts for DF61654N50FTV