DS3163 Maxim Integrated Products, DS3163 Datasheet - Page 132

IC TRPL ATM/PACKET PHY 400-PBGA

DS3163

Manufacturer Part Number
DS3163
Description
IC TRPL ATM/PACKET PHY 400-PBGA
Manufacturer
Maxim Integrated Products
Datasheet

Specifications of DS3163

Applications
*
Mounting Type
Surface Mount
Package / Case
400-BGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DS3163
Manufacturer:
Maxim Integrated
Quantity:
10 000
Part Number:
DS3163N
Manufacturer:
Maxim Integrated
Quantity:
10 000
DS3161/DS3162/DS3163/DS3164
10.6.6.4 POS-PHY Level 3 (or SPI-3), Transmit Side
In POS-PHY Level 3 (or SPI-3), the Link layer device pushes packets across the system interface. The Link layer
device polls the individual ports of the DS316x to determine which ports have space available for packet data, and
selects a port for packet data transfer. Only one PHY layer device can be present on a POS-PHY Level 3 (or SPI-
3) bus.
The Transmit System Interface Bus Controller accepts a transmit clock (TSCLK), transmit enable (TEN), and a
transmit data bus consisting of transmit data (TDATA[31:0]), transmit parity (TPRTY), transmit start of packet
(TSOX), transmit end of packet (TEOP), transmit error (TERR), transmit start of transfer (TSX), and transmit
modulus (TMOD[1:0]). It outputs transmit direct packet available (TDXA), transmit polled packet available (TPXA),
and transmit selected packet available (TSPA) signals. The transmit bus is used to transfer packet data whenever
one of the ports is selected for packet data transfer. TSOX is asserted during the first transfer of a packet, TEOP is
asserted during the last transfer of a packet, TERR is asserted when a packet has an error, TMOD indicates the
number of bytes transferred on TDATA during the last transfer of a packet, TSX is asserted when the selected
FIFO's port address has been placed on TDATA, packet data is transferred on TDATA, and the data bus parity is
indicated on TPRTY. All signals are sampled and updated using TSCLK. The TDXA, TPXA, and TSPA signals are
used to indicate when the Transmit FIFO has space available for a programmable number of bytes. There is a
TDXA for each port in the device. TDXA goes high when the associated port's Transmit FIFO has space available
for more than a programmable number of bytes. TDXA goes low when the associated port's Transmit FIFO is full.
TPXA reflects the current status of a port's TDXA signal when the port is polled. TSPA reflects the current status of
a port's TDXA signal when the port is selected. The TPXA and TSPA signals are always driven.
10.6.6.5 POS-PHY Level 2, Receive Side
In POS-PHY Level 2, the Link layer device pulls packets across the system interface. The Link layer device polls
the individual ports to determine which ports have packet data available, and selects a port for packet data transfer.
More than one PHY layer device can be present on a POS-PHY Level 2 bus.
The Receive System Interface Bus Controller accepts a receive clock (RSCLK), receive address (RADR[4:0]), and
receive enable (REN). It outputs a receive data bus consisting of receive data (RDATA[31:0]), receive parity
(RPRTY), receive start of packet (RSOX), receive end of packet (REOP), receive error (RERR), receive data valid
(RVAL), and receive modulus (RMOD[1:0]), as well as, a receive direct packet available (RDXA) signal and a
receive polled packet available (RPXA) signal. The receive data bus is used to transfer packet data whenever one
of the ports is selected for packet data transfer. RSOX is asserted during the first transfer of a packet, REOP is
asserted during the last transfer of a packet, RERR is asserted when a packet has an error, RMOD indicates the
number of bytes transferred on RDATA during the last transfer of a packet, RVAL is asserted when the receive
data bus is valid, RDATA transfers packet data, and RPRTY indicates the data bus parity. All signals are sampled
and updated using RSCLK. The RDXA and RPXA signals are used to indicate when the Receive FIFO has a
programmable number of bytes or an end of packet available for transfer. There is an RDXA for each port in the
device. RDXA goes high when the associated port's Receive FIFO contains more than a programmable number of
bytes or an end of packet. RDXA goes low when the associated port's Receive FIFO is empty. RPXA reflects the
current status of a port's RDXA signal when the port is polled. The data bus is tri-stated unless REN is asserted
(low) and one of the ports is selected for packet data transfer. The RPXA signal is tri-stated unless one of the ports
is being polled for FIFO fill status.
10.6.6.6 POS-PHY Level 3 (or SPI-3), Receive Side
In POS-PHY Level 3, the DS316x pushes packets across the system interface. The DS316x selects a port for
packet data transfer when it has packet data available. Only one PHY layer device can be present on a POS-PHY
Level 3 (or SPI-3) bus.
The Receive System Interface Bus Controller accepts a receive clock (RSCLK) and receive enable (REN). It
outputs a receive data bus consisting of receive data (RDATA[31:0]), receive parity (RPRTY), receive start of
packet (RSOX), receive end of packet (REOP), receive error (RERR), receive data valid (RVAL), receive start of
transfer (RSX), and receive modulus (RMOD[1:0]). The receive data bus is used to transfer packet data whenever
one of the ports has packet data available for transfer. RSOX is asserted during the first transfer of a packet, REOP
is asserted during the last transfer of a packet, RERR is asserted when a packet has an error, RMOD indicates the
number of bytes transferred on RDATA during the last transfer of a packet, RSX is asserted when the Link layer
port address has been placed on RDATA, RVAL is asserted when the receive data bus is valid, RDATA transfers

Related parts for DS3163