R5S72030W200FP Renesas Electronics America, R5S72030W200FP Datasheet - Page 419

IC SUPERH MPU ROMLESS 240QFP

R5S72030W200FP

Manufacturer Part Number
R5S72030W200FP
Description
IC SUPERH MPU ROMLESS 240QFP
Manufacturer
Renesas Electronics America
Series
SuperH® SH7200r
Datasheets

Specifications of R5S72030W200FP

Core Processor
SH2A-FPU
Core Size
32-Bit
Speed
200MHz
Connectivity
CAN, I²C, SCI, SSI, SSU, USB
Peripherals
DMA, LCD, POR, PWM, WDT
Number Of I /o
82
Program Memory Type
ROMless
Ram Size
80K x 8
Voltage - Supply (vcc/vdd)
1.1 V ~ 3.6 V
Data Converters
A/D 8x10b; D/A 2x8b
Oscillator Type
Internal
Operating Temperature
-20°C ~ 85°C
Package / Case
240-QFP
For Use With
R0K572030S000BE - KIT DEV FOR SH7203HS0005KCU11H - EMULATOR E10A-USB H8S(X),SH2(A)
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-
Program Memory Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
R5S72030W200FP
Manufacturer:
SAMSUNG
Quantity:
1 001
Part Number:
R5S72030W200FP
Manufacturer:
Renesas Electronics America
Quantity:
10 000
Part Number:
R5S72030W200FP
Manufacturer:
RENESAS
Quantity:
8 000
9.5.13
The bus arbitration of this LSI has the bus mastership in the normal state and releases the bus
mastership after receiving a bus request from another device.
Bus mastership is transferred at the boundary of bus cycles. Namely, bus mastership is released
immediately after receiving a bus request when a bus cycle is not being performed. The release of
bus mastership is delayed until the bus cycle is complete when a bus cycle is in progress. Even
when from outside the LSI it looks like a bus cycle is not being performed, a bus cycle may be
performing internally, started by inserting wait cycles between access cycles. Therefore, it cannot
be immediately determined whether or not bus mastership has been released by looking at the CSn
signal or other bus control signals. The states that do not allow bus mastership release are shown
below.
1. 16-byte transfer because of a cache miss
2. During write-back operation for the cache
3. Between the read and write cycles of a TAS instruction
4. Multiple bus cycles generated when the data bus width is smaller than the access size (for
5. 16-byte transfer by the DMAC
6. Setting the BLOCK bit in CMNCR to 1
7. 16-byte to 128-byte transfer by the LCDC
Moreover, by using DPRTY bit in CMNCR, whether the bus mastership request is received or not
can be selected during DMAC burst transfer.
The LSI has the bus mastership until a bus request is received from another device. Upon
acknowledging the assertion (low level) of the external bus request signal BREQ, the LSI releases
the bus at the completion of the current bus cycle and asserts the BACK signal. After the LSI
acknowledges the negation (high level) of the BREQ signal that indicates the external device has
released the bus, it negates the BACK signal and resumes the bus usage.
With the SDRAM interface, all bank pre-charge commands (PALLs) are issued when active banks
exist and the bus is released after completion of a PALL command.
The bus sequence is as follows. The address bus and data bus are placed in a high-impedance state
synchronized with the rising edge of CKIO. The bus mastership enable signal is asserted 0.5
cycles after the above timing, synchronized with the falling edge of CKIO. The bus control signals
(BS, CSn, RASU, RASL, CASU, CASL, CKE, DQMxx, WEn, RD, and RD/WR) are placed in
example, between bus cycles when longword access is made to a memory with a data bus
width of 8 bits)
Bus Arbitration
Rev. 3.00 Sep. 28, 2009 Page 387 of 1650
Section 9 Bus State Controller (BSC)
REJ09B0313-0300

Related parts for R5S72030W200FP