MPC555LFMZP40 Freescale Semiconductor, MPC555LFMZP40 Datasheet - Page 455

IC MCU 32BIT 40MHZ 272-BGA

MPC555LFMZP40

Manufacturer Part Number
MPC555LFMZP40
Description
IC MCU 32BIT 40MHZ 272-BGA
Manufacturer
Freescale Semiconductor
Series
MPC5xxr
Datasheets

Specifications of MPC555LFMZP40

Core Processor
PowerPC
Core Size
32-Bit
Speed
40MHz
Connectivity
CAN, EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
101
Program Memory Size
448KB (448K x 8)
Program Memory Type
FLASH
Ram Size
26K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 2.7 V
Data Converters
A/D 32x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
272-PBGA
Controller Family/series
POWER 5xx
Ram Memory Size
26KB
Cpu Speed
63MIPS
Embedded Interface Type
QSPI, SCI, TouCAN
Operating Temperature Range
-40°C To +125°C
No. Of Pins
272
Rohs Compliant
No
Processor Series
MPC5xx
Core
PowerPC
Data Bus Width
32 bit
Data Ram Size
26 KB
Interface Type
CAN, QSPI, SCI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
101
Operating Supply Voltage
3.3 V to 5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Development Tools By Supplier
MPC555CMEE
Minimum Operating Temperature
- 85 C
On-chip Adc
10 bit, 32 Channel
Cpu Family
MPC55xx
Device Core
PowerPC
Device Core Size
32b
Frequency (max)
40MHz
Total Internal Ram Size
32KB
# I/os (max)
101
Operating Supply Voltage (typ)
5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
272
Package Type
BGA
For Use With
MPC555CMEE - KIT EVAL FOR MPC555
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-
Lead Free Status / Rohs Status
No

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MPC555LFMZP40
Manufacturer:
MOTOLOLA
Quantity:
853
Part Number:
MPC555LFMZP40
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MPC555LFMZP40
Manufacturer:
MOT
Quantity:
2
Part Number:
MPC555LFMZP40R2
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
13.12.11 Conversion Command Word Table
MPC555
USER’S MANUAL
Bit(s)
10:15
0:1
2:7
8:9
The CCW table is a RAM, 64 words long and 10 bits wide, which can be programmed
by the software to request conversions of one or more analog input channels. The en-
tries in the CCW table are 10-bit conversion command words. The CCW table is writ-
ten by software and is not modified by the QADC64. Each CCW requests the
conversion of an analog channel to a digital result. The CCW specifies the analog
channel number, the input sample time, and whether the queue is to pause after the
current CCW.
The ten implemented bits of the CCW word are read/write data. They may be written
when the software initializes the QADC64. Unimplemented bits are read as zeros, and
write operations have no effect. Each location in the CCW table corresponds to a lo-
cation in the result word table. When a conversion is completed for a CCW entry, the
10-bit result is written in the corresponding result word entry. The QADC64 provides
64 CCW table entries.
The beginning of queue 1 is always the first location in the CCW table. The first loca-
tion of queue 2 is specified by the beginning of queue 2 pointer (BQ2) in QACR2. To
dedicate the entire CCW table to queue 1, software must do the following:
To dedicate the entire CCW table to queue 2, software must do the following:
• Program queue 2 to be in the disabled mode, and
• Program the beginning of BQ2 to ≥ 64.
• Program queue 1 to be in the disabled mode
• Program BQ2 to be the first location in the CCW table.
/
CWPQ1
CWPQ2
MPC556 QUEUED ANALOG-TO-DIGITAL CONVERTER MODULE-64
Name
Reserved
Command word pointer for queue 1. This field is a software read-only field, and write operations
have no effect. CWPQ1 allows software to read the last executed CCW in queue 1, regardless
which queue is active. The CWPQ1 field is a CCW word pointer with a valid range of 0 to 63.
In contrast to CWP, CPWQ1 is updated when the conversion result is written. When the QADC64
finishes a conversion in queue 1, both the result register is written and the CWPQ1 are updated.
Finally, when queue 1 operation is terminated after a CCW is read that is defined as BQ2, CWP
points to BQ2 while CWPQ1 points to the last CCW queue 1.
During the stop mode, the CWPQ1 is reset to 63, since the control registers and the analog logic
are reset. When the freeze mode is entered, the CWPQ1 is unchanged; it points to the last exe-
cuted CCW in queue 1.
Reserved
Command word pointer for queue 2. This field is a software read-only field, and write operations
have no effect. CWPQ2 allows software to read the last executed CCW in queue 2, regardless
which queue is active. The CWPQ2 field is a CCW word pointer with a valid range of 0 to 63.
In contrast to CWP, CPWQ2 is updated when the conversion result is written. When the QADC64
finishes a conversion in queue 2, both the result register is written and the CWPQ2 are updated.
During the stop mode, the CWPQ2 is reset to 63, since the control registers and the analog logic
are reset. When the freeze mode is entered, the CWP is unchanged; it points to the last executed
CCW in queue 2.
Freescale Semiconductor, Inc.
Table 13-18 QASR0 Bit Descriptions
For More Information On This Product,
Go to: www.freescale.com
Rev. 15 October 2000
Description
MOTOROLA
13-43

Related parts for MPC555LFMZP40